2 Jun 2013



File:Samsung 4G LTE modem-4.jpgIn telecommunications, 4G is the fourth generation of mobile phone mobile communication technology standards. It is a successor of the third generation (3G) standards. A 4G system provides mobile ultra-broadband Internet access, for example to laptops with USB wireless modems, to smartphones, and to other mobile devices. Conceivable applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, 3D television and Cloud Computing.
Two 4G candidate systems are commercially deployed: the Mobile WiMAX standard (at first in South Korea in 2006), and the first-release Long Term Evolution (LTE) standard (in Oslo, Norway and Stockholm, Sweden since 2009). It has however been debated if these first-release versions should be considered to be 4G or not, as discussed in the technical definition section below.
In the U.S., Sprint Nextel has deployed Mobile WiMAX networks since 2008, and MetroPCS was the first operator to offer LTE service in 2010. USB wireless modems have been available since the start, while WiMAX smartphones have been available since 2010, and LTE smartphones since 2011. Equipment made for different continents are not always compatible, because of different frequency bands. Mobile WiMAX are currently (April 2012) not available for the European market.

Technical definition

In March 2008, the International Telecommunications Union-Radio communications sector (ITU-R) specified a set of requirements for 4G standards, named the International Mobile Telecommunications Advanced (IMT-Advanced) specification, setting peak speed requirements for 4G service at 100 megabits per second (Mbit/s) for high mobility communication (such as from trains and cars) and 1 gigabit per second (Gbit/s) for low mobility communication (such as pedestrians and stationary users).[1]
Since the first-release versions of Mobile WiMAX and LTE support much less than 1 Gbit/s peak bit rate, they are not fully IMT-Advanced compliant, but are often branded 4G by service providers. On December 6, 2010, ITU-R recognized that these two technologies, as well as other beyond-3G technologies that do not fulfill the IMT-Advanced requirements, could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced compliant versions and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed".[2]
Mobile WiMAX Release 2 (also known as WirelessMAN-Advanced or IEEE 802.16m') and LTE Advanced (LTE-A) are IMT-Advanced compliant backwards compatible versions of the above two systems, standardized during the spring 2011,[citation needed] and promising speeds in the order of 1 Gbit/s. Services are expected in 2013.[3]
As opposed to earlier generations, a 4G system does not support traditional circuit-switched telephony service, but all-Internet Protocol (IP) based communication such as IP telephony. As seen below, the spread spectrum radio technology used in 3G systems, is abandoned in all 4G candidate systems and replaced by OFDMA multi-carrier transmission and other frequency-domain equalization (FDE) schemes, making it possible to transfer very high bit rates despite extensive multi-path radio propagation (echoes). The peak bit rate is further improved by smart antenna arrays for multiple-input multiple-output (MIMO) communications.
The term "generation" used to name successive evolutions of radio networks in general is arbitrary. There are several interpretations of it, and no official definition has been made despite the large consensus behind ITU-R's labels. From ITU-R's point of view, 4G is equivalent to IMT-Advanced which has specific performance requirements as explained below. But according operators, a generation of network refers to the deployment of a new non-backward-compatible technology. This usually corresponds to a huge investment with its own depreciation period, marketing strategy (if any), and deployment phases. It can even be different among operators. From the end user's point of view, only performance and cost makes sense. It is expected that the next generation of network performs better and cheaper than the previous generation, which is not that simple to state. Indeed, while a new generation of network arrives, the previous one can keep evolving to a point where it outperforms the first version of the new generation. In many countries, GSM, UMTS and LTE networks still coexist. It is thus much less ambiguous to use the name of the technology/standard, possibly followed by its version number, than a subjective arbitrary generation number which is destined to be challenged endlessly.


The nomenclature of the generations generally refers to a change in the fundamental nature of the service, non-backwards-compatible transmission technology, higher peak bit rates, new frequency bands, wider channel frequency bandwidth in Hertz, and higher capacity for many simultaneous data transfers (higher system spectral efficiency in bit/second/Hertz/site).
New mobile generations have appeared about every ten years since the first move from 1981 analog (1G) to digital (2G) transmission in 1992. This was followed, in 2001, by 3G multi-media support, spread spectrum transmission and at least 200 kbit/s peak bit rate, in 2011/2012 expected to be followed by "real" 4G, which refers to all-Internet Protocol (IP) packet-switched networks giving Ultra Mobile Broadband (gigabit speed) access.
While the ITU has adopted recommendations for technologies that would be used for future global communications, they do not actually perform the standardization or development work themselves, instead relying on the work of other standards bodies such as IEEE, The WiMAX Forum and 3GPP.
In mid-1990s, the ITU-R standardization organization released the IMT-2000 requirements as a framework for what standards should be considered 3G systems, requiring 200 kbit/s peak bit rate. In 2008, ITU-R specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G systems.
The fastest 3G-based standard in the UMTS family is the HSPA+ standard, which is commercially available since 2009 and offers 28 Mbit/s downstream (22 Mbit/s upstream) without MIMO, i.e. only with one antenna, and in 2011 accelerated up to 42 Mbit/s peak bit rate downstream using either DC-HSPA+ (simultaneous use of two 5 MHz UMTS carrier)[4] or 2x2 MIMO. In theory speeds up to 672 Mbit/s is possible, but has not been deployed yet. The fastest 3G-based standard in the CDMA2000 family is the EV-DO Rev. B, which is available since 2010 and offers 15.67 Mbit/s downstream.[citation needed]

IMT-Advanced requirements

This article uses 4G to refer to IMT-Advanced (International Mobile Telecommunications Advanced), as defined by ITU-R. An IMT-Advanced cellular system must fulfill the following requirements:[5]
  • Be based on an all-IP packet switched network.
  • Have peak data rates of up to approximately 100 Mbit/s for high mobility such as mobile access and up to approximately 1 Gbit/s for low mobility such as nomadic/local wireless access.
  • Be able to dynamically share and use the network resources to support more simultaneous users per cell.
  • Using scalable channel bandwidths of 5–20 MHz, optionally up to 40 MHz.[6][7]
  • Have peak link spectral efficiency of 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in the uplink (meaning that 1 Gbit/s in the downlink should be possible over less than 67 MHz bandwidth).
  • System spectral efficiency of up to 3 bit/s/Hz/cell in the downlink and 2.25 bit/s/Hz/cell for indoor usage.[6]
  • Smooth handovers across heterogeneous networks.
  • The ability to offer high quality of service for next generation multimedia support.
In September 2009, the technology proposals were submitted to the International Telecommunication Union (ITU) as 4G candidates.[8] Basically all proposals are based on two technologies:
Implementations of Mobile WiMAX and first-release LTE are largely considered a stopgap solution that will offer a considerable boost until WiMAX 2 (based on the 802.16m spec) and LTE Advanced are deployed. The latter's standard versions were ratified in spring 2011, but are still far from being implemented.
The first set of 3GPP requirements on LTE Advanced was approved in June 2008. LTE Advanced was to be standardized in 2010 as part of Release 10 of the 3GPP specification. LTE Advanced will be based on the existing LTE specification Release 10 and will not be defined as a new specification series. A summary of the technologies that have been studied as the basis for LTE Advanced is included in a technical report.
Some sources consider first-release LTE and Mobile WiMAX implementations as pre-4G or near-4G, as they do not fully comply with the planned requirements of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile.
Confusion has been caused by some mobile carriers who have launched products advertised as 4G but which according to some sources are pre-4G versions, commonly referred to as '3.9G', which do not follow the ITU-R defined principles for 4G standards, but today can be called 4G according to ITU-R. A common argument for branding 3.9G systems as new-generation is that they use different frequency bands from 3G technologies; that they are based on a new radio-interface paradigm; and that the standards are not backwards compatible with 3G, whilst some of the standards are forwards compatible with IMT-2000 compliant versions of the same standards.


Post a Comment

Deeksha. Powered by Blogger.